FANS FOR ROUND DUCTS

In-line centrifugal fans in plastic casing with the air capacity up to **1700 m³/h**

Applications

VK fans are applied for supply and exhaust ventilation systems of commercial, office and other premises. Compatible with \emptyset 100, 125, 150, 200, 250 and 315 mm round air ducts. Models marked VK...Q are supplied with quiet motors for low-noise applications. Due to the corrosion-resistant durable plastic casing, these models are the perfect solution for the installation in exhaust ventilation systems in humid premises such as bathrooms, kitchens etc.

Design

The casing is made of high-quality durable ABS plastic. The fans are equipped with waterproof terminal boxes. Models marked VK..R are supplied with the power cord and a plug.

Motor

The impeller with backward curved blades is powered by a single-phase asynchronous AC motor with external rotor including the following features:

• A dynamic balanced impeller with backward curved blades balanced in two planes.

• Overheating protection with automatic restart.

➤ Maintenance-free ball-bearings used with motors and designed for at least 40 000 hours operation. Models marked VKS are supplied with high-powered motors. Motor protection rating IP 44.

Speed control

Smooth or stepped speed control can be performed by external thymistor or transformer.

Several fans can be connected to one speed controller if the total power and operating current of fans do not exceed the rated controller values.

Mounting

Instalation to the wall or ceiling can be performed by means of mounting brackets (included in the delivery) or with additional PVK holders (available upon request). The fan can be mounted at any angle. Electric connection and installation shall be performed in compliance with the manual and the wiring diagram on the terminal box.

VK fan kitchen exhaust ventilation example

Designation key:

* VK 150 model is compatible with the air ducts both Ø 150 and 160 mm

page 250

page 254

page 262

page 294

page 248

Accessories _____

page 296

page 304

page 310

page 314

page 310

page 315

page 240

32

Automatic speed control module

VK..U1 and VK..U1n are the perfect solution for greenhouses and other premises requiring air temperature control. These models are fitted with an integrated electronic speed control module TSC with temperature sensor that provides automatic speed regulation as a function of air temperature in the duct (VK..U1 with integrated temperature sensor) or directly in the ventilated area (VK..U1n with external temperature sensor).

Temperature and minimum speed can be adjusted with two control knobs on the controller panel.

The external temperature sensor (in VK..Un and VK..U1n models) is supplied with 4 m cable and a protecting cover against mechanical damage. The LED indicator for thermostat operation is placed at the front panel of the fan.

Automatic speed controller pattern for VK fans.

Set points for the maximum air temperature and the fan speed are manually adjusted by the control knobs. Normally the fan operates with the speed which is set by the knob. If the temperature exceeds the set point, the fan boosts to the maximum speed. After that when the temperature drops down below the set point, the fan goes back to preset speed. The switching delay disables frequent motor switching if the set temperature in the duct is equal to the threshold temperature.

There are two patters of delay that may be used in various cases:

1. Temperature sensor delay (VK...U): if the temperature rises by 2°C above the set thermostat operating threshold the motor switches to the

increased speed. The motor switches to the preset (low) speed as the temperature drops below the set threshold. This pattern can be used to keep air temperature to within 2°C. In this case the fan switches are rare.

2. Timer delay (VK...U1): the motor sets to higher speed 5 min after the temperature exceeds the set threshold. The motor switches to the preset (low) speed 5 min. after the temperature drops below the set threshold.

This pattern can be used to keep the air temperature at a precise level. In this case the fan switches more frequently than in the pattern of temperature sensor delay, but the intervals do not exceed 5 minutes.

Example for temperature sensor delay pattern: motor operates with the rated speed =60%Initial conditions: - rated speed is set as 60% of the maximum speed - the temperature in the duct rises, reaches 25°C and keeps rising - operating threshold is set as 25°C - air temperature in the duct is 20°C fan switches to the maximum speed =100% and the delay timer switches for 5 minutes again on motor operates with the rated speed =60% - the temperature in the duct goes down - air temperature in the duct rises the motor operates with the maximum speed =100% motor operates with the rated speed =60% - the temperature in the duct reaches 25°C and keeps rising - air temperature in the duct reaches 27°C motor switches to the speed =100% after the timer stops, the motor switches to the preset rated speed (=60%). After the speed switch the timer switches again for air temperature in the duct goes down 5 minutes on. mototr operates with the speed =100% - the temperature in the duct rises, reaches 25°C and keeps rising - temperature in the duct reaches 25°C again motor switches to the preset rated speed =60% after the timer stops, the motor switches to the maximum speed (=100%). After the speed switch the delay timer switches again for Example for timer delay pattern: 5 minutes on. Initial conditions: - rated speed is set as 60% of maximum speed Thus, in timer delay pattern the delay timer activates every time the fan - operating threshold is set as 25°C speed changes. - air temperature in the duct is 20°C

Vents VK...U with the electronic temperature and speed module

Bracket for easy installation supplied with the fan

PVK holder

VK...R is equipped with the power cord

FANS FOR ROUND DUCTS

Technica	data
recillica	i uala.

	VK 100 Q	VK 100	VK 125 Q	VK 125	VK 150	VK 200	VKS 200
Voltage [V / 50 Hz]	230	230	230	230	230	230	230
Power [W]	62	80	61	79	80	107	173
Current [A]	0,38	0,34	0,38	0,34	0,35	0,47	0,76
Maximum air flow [m ³ /h]	205	250	260	355	460	780	930
RPM [min ⁻¹]	2650	2820	2610	2800	2725	2660	2125
Noise level at 3 m [dBA]	36	46	36	46	46	48	51
Maximum operating temperature [°C]	-25 +55	-25 +55	-25 +55	-25 +55	-25 +55	-25 +50	-25 +45
Protection rating	IP X4	IP X4	IP X4	IP X4	IP X4	IP X4	IP X4

VK 125 Q

Power, [W]

Sound-power level	Octave-frequency band [Hz]									
	Hz	Gen	63	125	250	500	1000	2000	4000	8000
L _{wA} to inlet	dBA	58	34	51	53	53	49	47	37	30
L _{wA} to outlet	dBA	61	37	53	57	62	51	48	39	31
L _{wA} to environment	dBA	66	48	63	61	41	32	13	30	26
VK 125	Hz	Gen	63	125	250	500	1000	2000	4000	8000
L _{wA} to inlet	dBA	74	55	65	66	70	63	61	52	40
L _{wA} to outlet	dBA	77	58	65	71	75	69	61	53	44
L _{wA} to environment	dBA	63	51	60	58	44	35	19	30	25

200		
und n	owor	lovol

vк

Sound-power level			Octave-frequency band [Hz]								
	Hz	Gen	63	125	250	500	1000	2000	4000	8000	
L _{wA} to inlet	dBA	76	47	65	65	70	63	61	61	49	
L _{wA} to outlet	dBA	81	53	66	71	73	65	68	63	51	
L_{wA} to environment	dBA	64	45	62	59	48	34	26	45	39	
VKS 200	Hz	Gen	63	125	250	500	1000	2000	4000	8000	
L _{wA} to inlet	dBA	75	51	69	72	71	67	60	60	51	
L _{wA} to outlet	dBA	81	56	74	71	76	69	62	57	55	
L _{wA} to environment	dBA	65	49	63	60	47	35	28	47	39	

71 35

20	0	30	0	40	0	50
			Air c	apac	∶ity, ∣	[m³/h
		\sim	-			
\sim					VK 1	50
					T	
		200				Air capacity,

54

41

 VK 100 L_{wA} to inlet

L_{wA} to environment

dBA

76

dBA

dBA

dBA

44

62 53

VK 100 Q

L_{wA} to inlet

L_{wA} to outlet L_{wA} to environment

INENTS

Technical data:

	VK 250 Q	VK 250	VK 315	VKS 315
Voltage [V / 50 Hz]	230	230	230	230
Power [W]	108	173	200	310
Current [A]	0,47	0,76	0,88	1,36
Maximum air flow [m³/h]	865	1080	1340	1700
RPM [min ⁻¹]	2560	2090	2655	2590
Noise level at 3 m [dBA]	51	50	50	53
Maximum operating temperature [°C]	-25 +50	-25 +50	-25 +50	-25 +45
Protection rating	IP X4	IP X4	IP X4	IP X4

VK 315

Sound-power level			Octave-frequency band [Hz]								
	Hz	Gen	63	125	250	500	1000	2000	4000	8000	
L _{wA} to inlet	dBA	68	46	59	62	65	60	59	64	53	
L _{wA} to outlet	dBA	72	47	62	62	65	65	60	64	57	
L _{wA} to environment	dBA	60	41	57	53	44	35	37	54	45	
VK 250	Hz	Gen	63	125	250	500	1000	2000	4000	8000	
L _{wA} to inlet	dBA	75	59	64	69	68	66	62	53	46	
L _{wA} to outlet	dBA	73	62	68	71	72	70	62	55	50	
L _{wA} to environment	dBA	67	58	62	61	50	41	37	45	38	

VENTS VK

Sound-power level		Octave-frequency band [Hz]								
	Hz	Gen	63	125	250	500	1000	2000	4000	8000
L _{wA} to inlet	dBA	72	35	50	61	66	64	64	60	55
L _{wA} to outlet	dBA	71	40	57	68	71	65	63	57	57
L _{wA} to environment	dBA	58	38	51	56	53	44	51	50	49
VKS 315	Hz	Gen	63	125	250	500	1000	2000	4000	8000
L _{wA} to inlet	dBA	75	57	68	71	71	69	66	61	59
L _{wA} to outlet	dBA	79	58	68	76	74	67	68	66	59
L _{wA} to environment	dBA	70	54	63	64	56	44	53	57	50

Fan overall dimensions:

VK 250 Q

Туре		Mass						
туре	ØD	ØD1	В	L	L1	L2	L3	[kg]
VK 100 Q / VK 100	100	250	270	230	30	27	30	2,15
VK 125 Q / VK 125	125	250	270	220	30	27	30	2,2
VK 150	150 / 160	300	310	286	30	30	30	2,6
VK 200	200	340	354	276	30	30	40	4,0
VKS 200	200	340	354	276	30	30	40	4,3
VK 250 Q / VK 250	250	340	354	265	30	30	40	4,5
VK 315	315	400	414	276	40	55	40	5,1
VKS 315	315	400	414	276	40	55	40	5,2

